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Mean first passage times of processes driven by white shot noise
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We consider mean first passage times in systems driven by white shot noise with exponentially distributed
jump heights. Simple interpretable results are obtained and the linkage between those results and the steady-
state probability density function of the process is presented. The virtual waiting-time or Taka´cs process
~constant losses! and the shot noise process with linear losses are analyzed in depth, along with a more
complex process with useful implications for the modeling of the soil moisture dynamics in hydrology.
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I. INTRODUCTION

In recent years several papers have dealt with the der
tion of exact expressions for the mean first passage ti
~MFPT’s! of specific stochastic processes@1–8#. The par-
ticular case of systems driven by white shot noise has
received considerable attention@5–7#, both because of its
analytical tractability and because of the large number of
possible applications. The main emphasis of this paper
be on the derivation of some interpretable expressions for
MFPT’s of stochastic processes driven by white shot no
in the special case when the jump heights are exponent
distributed.

We will consider processes whose dynamical evolution
given by

ds

dt
52r~s!1F~ t !, ~1!

where s5s(t) is the state variable,t is time, r(s) is any
function defining the deterministic losses of the process,
F(t) is the random driving process, in the form of white sh
noise or white Poisson noise. This latter is defined by a
quence of pulses at random timest i , each pulse having an
independent random heighthi , i.e.,

F~ t !5(
i

hid~ t2t i !, ~2!

whered(•) is the Dirac delta function. We assume that t
random times$t i% form a Poisson sequence, i.e., that t
probability distribution of the time intervals$t i5t i2t i 21 ; i
51,2,3, . . . % is f (t)5le2lt, where 1/l is the mean interva
between two subsequent pulses. Under this assumption
dynamic process~1! is Markovian with respect tos. The
probability distribution of the random heightshi ~whose di-
mension is the same ass) is assumed to be exponential wi
mean value (1/g) @ f (h)5ge2gh#. Since we are considerin
positive jump heights, to guarantee stationarityr(s) must
also be positive. The extension of the results to the oppo
case@hi,0 andr(s),0# is straightforward.

In many practical applications, such as the description
soil moisture in hydrology@9#, it is important to consider the
1063-651X/2001/63~3!/036105~8!/$15.00 63 0361
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case when the state variables has an upper bound, i.e.,s
<sb . The probability distribution ofhi in this case become
state dependent and reads

f 8~h,s!5H~sb2h2s!

3Fge2gh1d~sb2h2s!E
sb2s

`

duge2guG , ~3!

whereH(•) is the Heaviside step function. In the followin
we will use this second formulation which also includes t
unbounded case in the limit assb→`.

Masoliver @5#, in the more general framework of non
Markovian processes, obtained closed exact expression
the MFPT’s of dynamic systems driven by white shot no
for the special cases of exponentially distributed and c
stant jump heights. In this paper we derive exact express
for the general process~1!–~3!. Such expressions agree wit
those of Masoliver@5#, but are more directly derived an
written in a much simpler and usable form, thanks to t
Markovian nature of the process. Moreover, the linkage
tween the first passage times and the steady-state proba
density function~pdf! of the process is also formally estab
lished.

The paper is organized as follows. In Sec. II we detail
dynamics of the system. In Sec. III the derivation of t
MFPT’s is carried out. The results are then applied to th
special forms of loss function in Sec. IV and the conclusio
are drawn in Sec. V.

II. DYNAMICS OF THE SYSTEM

In the most general case the pdf of the state variables for
the process~1! can be written as

p~s,s0 ,t !5pc~s,s0 ,t !1d~s2sl !P~s,s0 ,t !, ~4!

wheres0 is the starting point of the trajectory, defined by th
initial condition p(s,s0 ,t)5d(s2s0). The continuous part
of the pdf ispc(s,s0 ,t) andP(s,s0 ,t) is the time-dependen
cumulative density function ofs. The atom of probability
d(s2sl)P(s,s0 ,t) is present ins5sl if r(sl)Þr(sl

2)50.
The resulting forward differential Chapman-Kolmogoro
equations are in this case~e.g., Refs.@10,11#!,
©2001 The American Physical Society05-1
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]

]t
pc~s,s0 ,t !5

]

]s
@pc~s,s0 ,t !r~s!#2lpc~s,s0 ,t !

1lE
sl

s

dupc~u,s0 ,t ! f 8~s2u;u!

1lP~sl ,s0 ,t ! f 8~s,sl ! ~5!

for the continuous part of the pdf and

]

]t
P~sl ,s0 ,t !52lP~sl ,s0 ,t !1r~sl !pc~sl ,s0 ,t ! ~6!

for the atom of probability ins5sl .
Later in this paper we will focus on some analytical re

tionships between MFPT’s and the steady-state pdf of
process. We first summarize the solution of Eqs.~5! and~6!
under steady-state conditions. Taking the limit ast→` of
Eqs. ~5! and ~6! and substituting Eq.~3! in Eq. ~5!, after
some manipulations~see Refs.@11,12#! one obtains the equa
tions valid for the steady-state pdf ofs,

d

ds
@r~s!pc~s!#1gr~s!pc~s!2lpc~s!50, ~7!

lP~sl !5r~sl !pc~sl !. ~8!

The general form of the solution for the continuous part
the steady-state pdf is given in@11# as

pc~s!5
C

r~s!
e2gs1l* [du/r(u)] , ~9!

whereC is a constant of integration that can be calcula
imposing the conditionP(sb)51 @in the unbounded case
P(`)51#. Due to the Markovian nature of the process, t
bounded and unbounded cases have the same solution@Eq.
~9!#, all the differences being embedded in the different v
ues of the constantC ~see Ref.@9#!.

III. MEAN FIRST PASSAGE TIMES

From the forward equations~5! and~6! it is easy to obtain
the corresponding backward or adjoint equations@13#. From
the backward equation it is then straightforward to write
differential equation that describes the evolution of the pr
ability density,gT(s0 ,t), that a particle staring froms0 in-
side an interval$j8,j% leaves for the first time the interval a
a time t @13#. This is the usual procedure to obtain an equ
tion for the MFPT statistics when the process is Markov
~e.g.,@4,13,14#!. For the process under consideration the
sulting equation forgT(s0 ,t) is thus

]gT~s0 ,t !

]t
52r~s0!

]gT~s0 ,t !

]s0

1lE
s0

j

f 8~z2s0 ,s0!gT~z,t !dz2lgT~s0 ,t !.

~10!
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One does not need to solve the partial integro-differen
equation~10! to obtain the first passage times statistics of
process. In fact, the moments of the probability distributi
gT(s0 ,t) areTn(s0)5*0

`tngT(s0 ,t)dt. Therefore, an expres
sion involving the mean time for exiting the interval$j8,j%,
T1(s0) ~the subscript 1 is omitted from here on!, is obtained
from Eq. ~10! as

2152r~s0!
dT~s0!

ds0
1lE

s0

j

ge2g(z2s0)T~z!dz2lT~s0!,

~11!

where the exponential part of the jump distribution,f 8(z
2s0 ,s0), has been used in the integral on the right-hand s
because, in the hypothesis thatj,sb , the presence of the
bound at sb becomes irrelevant. The integro-differenti
equation~11! was also obtained by Masoliver@Ref. @5#, Eq.
~A4!# in a different and more general way.

Differentiating ~11! with respect tos0 and reorganizing
the terms, the following second-order differential equation
obtained:

r~s0!
d2T~s0!

ds0
2

1S l1
dr~s0!

ds0
2gr~s0! D dT~s0!

ds0
1g50.

~12!

Equation ~12! needs two boundary conditions: the first
obtained from Eq.~11! evaluated ats05j,

r~j!
dT~s0!

ds0
us05j512lT~j!. ~13!

For the second boundary condition one has to cons
whether the lower limitj8 is above or belowsl . In the first
case,j8 is a real absorbing barrier, so that the bounda
condition isT(j8)50 @see Fig. 1~a!#. In contrast, whenj8
,sl , j8 cannot be reached by the trajectory@see Fig. 1~b!#,
and the average exiting time from the interval becomes
mean first passage time of the thresholdj. We will use the
notationTj(s0) to emphasize that in this case the variab
depends only onj and not onj8. In this case the secon
boundary condition is obtained by settings05sl in Eq. ~11!,
i.e.,

Tj~sl !5E
sl

j

ge2g(z2sl )Tj~z!dz1
1

l
. ~14!

A. MFPT’s of a threshold j above the initial point s0

We consider first the case whenj8,sl @Fig. 1~b!#. The
solution of Eq.~12! with boundary conditions~13! and ~14!
is @Ref. @5#, Eq. ~5.34!#

Tj~s0!52gE
s0

1

r~u!
eM (u)E

u
e2M (z)dzdu

1C1~j!E
s0

1

r~u!
eM (u)du1C2~j!, ~15!
5-2
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whereC1(j) andC2(j) are integration constants and

M ~u!5gu2lE
u

1

r~z!
dz. ~16!

Equations~15! and~16! present some difficulties of applica
tion due to the involved form of the boundary conditio
~13! and~14! which defineC1(j) andC2(j). In the follow-
ing we will show thatC1(j) andC2(j) can be directly cal-
culated when the jump heights are exponentially distribut
From Eqs.~15! and~16! one may easily determine the valu
of the integration constantC2(j), which allows us to rewrite
Eq. ~15! as

Tj~s0!5
1

l
2

C1~j!

l
eM (j)1

g

l
eM (j)E

j
e2M (x)dx

2C1~j!E
s0

j eM (x)

r~x!
dx1gE

s0

j eM (x)

r~x!
E

x
e2M (x8)dxdx8.

~17!

Equation~17! can now be inserted in Eq.~14!. Integration by
parts of some terms and reorganization of the terms lead

FIG. 1. ~a! and~b! trajectories and first passage times when
thresholdsj8 andj are both greater than the fixed pointsl ~a! and
whenj8,sl ~b!.
03610
d.

to

C1~j!F E
sl

j

e2g(u2sl )
eM (u)

r~u!
du1e2g(j2sl )

eM (j)

l G
52

1

l
1

e2g(j2sl )

l
1gE

sl

j

e2g(u2sl )
eM (u)

r~u!

3E
u
e2M (z)dzdu1

g

l
e2g(j2sl )eM (j)E

j
e2M (u)du.

~18!

By noticing from Eq.~16! that

e2gueM (u)

r~u!
52

1

l

d~e2gueM (u)!

du

one can proceed with the direct integration of the first te
on the left-hand side~lhs! of Eq. ~18! and with the integra-
tion by parts of the third term on the right-hand side~rhs! of
the same equation. A further reorganization of terms lead

C1~j!5gE
sl

e2M (u)du. ~19!

The value ofC1, which results to be independent ofj, can
be substituted in Eq.~17! yielding

Tj~s0!5
1

l
1

g

l
eM (j)E

sl

j

e2M (u)du

1gE
s0

j eM (u)

r~u!
E

sl

u

e2M (z)dzdu. ~20!

Equation ~20! represents a first simplification of the resu
that was given in@5# as a combination of Eqs.~13!–~15!. The
linkage between the MFPT’s and the steady-state pdf of
process allows further simplifications of Eq.~20!. Consider
Eqs.~9! and~16!: one can writepc(s)5@C/r(s)#e2M (s), so
that Eq.~20! becomes

Tj~s0!5
1

l
1

g

lpc~j!r~j!
E

sl

j

pc~u!r~u!du

1gE
s0

j 1

pc~u!r2~u!
E

sl

u

pc~z!r~z!dzdu. ~21!

Equation~7! can now be used to simplify the above expre
sion. In fact, integration of Eq.~7! and substitution in Eq.
~21! yields, after using Eq.~8!,

Tj~s0!5
P~j!

pc~j!r~j!
1E

s0

j F lP~u!

pc~u!r2~u!
2

1

r~u!Gdu.

~22!

Note that when the starting points0 coincides with the
thresholdj, the integral on the rhs cancels out and the me
crossing time reads

e

5-3
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Tj~j!5
P~j!

pc~j!r~j!
. ~23!

As a consequence, under steady-state conditions the
quency of the upcrossing~or downcrossing! events of the
thresholdj can be obtained from Eq.~23! @15# as

n~j!5pc~j!r~j!. ~24!

Returning to the MFPT’s, some manipulation of Eq.~22!
leads to the synthetic expression

Tj~s0!5Ts0
~s0!1gE

s0

j

Tu~u!du, ~25!

which, along with Eq.~23!, completely defines the MFPT
from s0 to j for s0,j. Note that a similar relationship be
tween MFPT’s and steady-state pdf’s was obtained by B
akrishnanet al. @16# for processes driven by Gaussian wh
noise.

Some important properties of the MFPT’s become ma
fest from this formulation: bothTj(j) and Tj(s0) in Eqs.
~23! and ~25! can be expressed as functions of the ra
@P(u)/pc(u)r(u)#, whereP(u) is the steady-state cumula
tive density function calculated at a certain levelu, p(u) is
the steady-state probability density function at the sa
level, andr(u) is the loss function, again at the levelu. We
have pointed out before that all the changes induced inp(s)
from the presence of the bound ats5sb are embedded in the
constant of normalizationC. However, the constantC is
present both inP(u) and inpc(u), so that it cancels out from
the expressions of the MFPT. The value of the latter is t
independent of the presence of the bound ins5sb , and, for
similar reasons, of the shape of the loss function above
thresholdj. The opposite is true for the frequencyn(j) that
contains the constantC through pc(j) and therefore also
depends on the part of the dynamics abovej.

B. MFPT’s of a threshold j8 below the initial point s0

We consider now the MFPT’s whenj8.sl @see Fig. 1~a!#
in the special case whenj→` (j.sb in the bounded case!.
This variable, that we will callTj8(s0), represents the aver
age time that a particle starting froms5s0.j8 takes to ar-
rive to j8. Equation~12! needs now to be integrated with th
boundary conditions given by Eq.~13! and Tj8(j81)50,
where the plus subscript is used to put in evidence the
continuity Tj8(j8)5P(j8)/@r(j8)p(j8)#ÞTj8(j81)50.
The procedure to calculate the resulting integration const
is analogous to that used before. The final result is~see also
@7#!

Tj8~s0!5gE
j8

s0eM (u)

r~u!
E

u

`

e2M (z)dzdu. ~26!

Splitting the integral on the rhs in the part below and abo
the boundsb and considering again the relationship betwe
M (u) and the steady-state pdf, one obtains
03610
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Tj8~s0!5E
j8

s0 1

r2~u!pc~u!
@l2lP~u!1pc~u!r~u!#du

5Ts0
~s0!2Tj8~j8!1

1

n~j8!
2

1

n~s0!

1gE
j8

s0S 1

n~u!
2Tu~u! Ddu, ~27!

whereTs0
(s0), Tj8(j8), andTu(u) are calculated from Eq

~23!, n(j8), n(s0), andn(u) from Eq. ~24!.
Differently from Tj(s0), Tj8(s0) depends on the presenc

of the bound ats5sb and on the shape ofr(s) for s.s0.
This is clear from the presence in Eq.~27! of n(j8), n(s0),
and n(u), which in turn contain the normalization consta
C. In fact, the trajectory froms0 to j8 can take any value
abovej8 with the presence of the upper bound decreas
the first passage time ofj8 for all those trajectories tha
would have taken values abovesb in unbounded conditions

IV. APPLICATIONS

We will consider in the following three special cases
particular physical importance. The first is the well know
virtual waiting time or Taka´cs problem, withr(s)5b, s
>0; the second is the shot noise process with linear los
e.g., r(s)5bs; in the third case a piecewise loss functio
and the bound insb51 are considered. This latter choice
important to outline the procedure of analysis of the MFPT
when more complicated forms ofr(s) need to be used. The
special case whens is the relative soil moisture conten
forced by a stochastic rainfall input@9,12,17–19# will be
used as an example of an important application.

A. The virtual waiting-time process

The virtual waiting-time process is a very well studie
one, since Taka´cs @20# pointed out its importance in queuin
and storage contexts. The loss function for this proces
r(s)5b, s>0, ands can be, for example, the total time
would take to serve all costumers in an office at timet ~if
b51 we have a single serverM /M /1 queue! or the time-
dependent amount of water in a reservoir depleted at c
stant rateb. The steady-state probability density function f
this process is@see Eq.~9!#

pc~s!5
C

b
e2s[g2(l/b)] ~28!

with an atom of probability ins50, P(0)5C/l. In the
unbounded case the condition of stationarity of the proces
g.l/b and the constant of integration isC5@l(gb
2l)/gb#, in the bounded case the process is always stat
ary and the constant of integration is

C5
l~gb2l!

gb2le2sb[g2(l/b)]
.

5-4
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The MFPT of the thresholdj when the initial point is also
s05j is, from Eq.~23!,

Tj~j!5
gb

l~gb2l!
ej[g2(l/b)]2

1

gb2l
, ~29!

the frequency of upcrossings ofj is @Eq. ~24!#

n~j!5Ce2j[g2(l/b)] , ~30!

and the MFPT ofj whens0,j is, from Eq.~25!,

Tj~s0!5
gb

gb2l F gb

l~gb2l!
ej[g2(l/b)]

2
1

gb2l
es0[g2(l/b)]2

1

b
~j2s0!2

1

gbG .
~31!

Finally, the MFPT ofj8, with s0.j8, reads from Eq.~27!

Tj8~s0!5
Cgb2l~gb2l!

C~gb2l!2
@ej8[g2(l/b)]2es0[g2(l/b)] #

1
g

gb2l
~s02j8!, ~32!

that in the unbounded case assumes the simple form

Tj8~s0!5
g

gb2l
~s02j8!, g.

l

b
. ~33!

Equations~31! and~32! are plotted in Fig. 2 taking the initia
conditions0 as variable. Four curves are traced for differe
values of the thresholdj ~or j8) and a black circle is placed
on each curve wheres05j @the position of the circles is
therefore also described by Eq.~29!#. On the left of these
circles we haves0,j and Eq.~31! is valid, while on their

FIG. 2. MFPT’s ofj (j8), Tj(s0), as a function of the initial
locations0 for the Takács process. Four curves for different thres
olds j are shown with dashed segments of different length. Bl
circles are placed wheres05j @Eq. ~29!#; on the left of these circles
we haves0,j and Eq.~31! is valid, on their rights0.j8 and Eq.
~32! is used. For all the equations the parameters values arel51
d21, g51, b51.1 d21, andsb510.
03610
t

right s0.j8 and Eq.~32! is used. Equations~31! and ~32!
derive from the imposition of different boundary condition
for the differential equation~12!; this leads to the already
mentioned inequalityTj(j)ÞTj8(j81)50 and to the dis-
continuity of each curve ats05j (j8). Also note that, due to
the presence of an upper bound atsb510, the parts of the
curves on the rhs are bent downward with respect to
linear expression given by Eq.~32!: in fact, as pointed out
before, the values ofTj8(s0) decrease as a consequence
the restriction imposed to the trajectories by the presenc
the bound. This effect is more evident when the start
point s0 is closer to the bound.

A final comment regards the parametersl, g, andb: the
unbounded Taka´cs problem is stationary only wheng
.l/b and, also in the bounded case, the sign ofg2l/b is
very important in determining the form of Eqs.~31! and~32!.
In Fig. 2 we usedl51, g51, andb51.1 @the choice of the
dimension ofl ~e.g., d21 or s21) depends on the proces
under consideration and determines the dimension
Tj(s0)#. If we had takenb,1 the values ofTj(s0) would
have dramatically decreased, while those ofTj8(s0) would
have increased. In the special case wheng5l/b the steady-
state probability distribution becomes uniform,pc(s)
5@l/(b1lsb)#. The MFPT’s in this case are obtained e
ther taking the limit as the numerator and denominator
Eqs.~29!, ~31!, and~32! tend to zero or by directly applying
the relations~23!, ~25!, and ~27! with the above uniform
distribution. One obtains

Tj~j!5
1

l
1

j

b
, ~34!

n~j!5C5
lb

b1lsb
, ~35!

Tj~s0!5
1

l
1

gj

l
1

g

2b
~j22s0

2!, ~36!

Tj8~s0!5
11gsb

b
~s02j8!2

g

2b
~s0

22j82!. ~37!

In unbounded conditions (sb→`), Tj(j) andTj(s0) remain
unchanged, the frequencyn(j) tends to zero, andTj8(s0)
tends to infinity, due to the nonstationarity of the process
this case.

B. The shot noise process with linear losses

The second application involves a linear loss function
the formr(s)5bs. The decreasing trajectories ofs are thus
exponential, and the process corresponds to a particular f
of shot noise in which the ‘‘shots’’ are exponentially deca
ing pulses of random heights~e.g., @11#!. The steady-state
pdf is in this case

p~s!5pc~s!5
C

b
s(l/b)21e2gs, ~38!

whereC is the normalization constant of the pdf,

k

5-5
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C5
bgl/b

G8Fl

b
,gsbG ,

with (G8@•,•#5G@•#2G@•,•#, whereG@•# is the Gamma
function andG@•,•# the incomplete Gamma function!. When
there is no upper bound,p(s) is called a gamma distribution
with mean values̄5l/bg.

The MFPT of the thresholdj (j8) with starting points0
can be calculated, using the expression for the steady-
pdf equation~38!, from Eqs. ~23!, ~25!, and ~27!. For s0
5j one obtains

Tj~j!5
1

b
~gj!2l/begjG8Fl

b
,gjG5

1

l1F1F1,11
l

b
,gjG ,

~39!

where 1F1@•,•,•# is the confluent hypergeometric functio
or Kummer function@21#. Whens0,j the MFPT ofj reads

Tj~s0!5
1

l1F1F1,11
l

b
,gs0G1

gj

l 2F2F1,1;2,11
l

b
;gjG

2
gs0

l 2F2F1,1;2,11
l

b
;gs0G , ~40!

where 2F2@•,•;•,•;•# is the generalized hypergeometr
function @22#. Finally, the MFPT froms0 to j8 is, whens0
.j8,

Tj8~s0!5
1

b
~gs0!2l/begs0S G8Fl

b
,gs0G2G8Fl

b
,gsbG D

2
1

b
~gj8!2l/begj8S G8Fl

b
,gj8G2G8Fl

b
,gsbG D

1
gj8

l 2F2F1,1;2,11
l

b
;gj8G2

gs0

l 2F2F1,1;2,1

1
l

b
;gs0G1

1

b
~21!l/bS GF12

l

b
,2gs0G

2GF12
l

b
,2gj8G DG8Fl

b
,gsbG . ~41!

In Fig. 3, Tj(j) from Eq. ~39! and the frequency of cross
ings, n(j), are plotted as a function ofj. The values ofl
andg are kept constant and equal to 1, whileb varies from
0.4 to 1.6. Common features for all the curves are the
crease ofTj(j) with j and the presence of a maximum of th
crossing frequencyn(j). The valuejmax for which n(j) has
a maximum is usually very close to the mean values̄ of the
steady-state distribution, because both represent levelss
around which the trajectory preferably evolve. Howev
only in the unbounded case the two values coincide: in f
one can setr(s)pc(s)5n(s) in Eq. ~7!, obtaining the equa-
tion gr(jmax)2l50 for the abscissa of the maximum
crossing frequency. When the loss function is linear one
03610
ate

-

f
,
t,

-

tains jmax5l/gb. Such value is in general different from
the mean steady-state value which from Eq.~38! results to be

s̄5
l

gb
2

~gsb!l/be2gsb

gG8Fl

b
,gsbG

and converges tojmax only in the unbounded case.

C. The hydrologic soil moisture process

Our third example deals with a model with a more co
plex form of the loss function~see Fig. 4!. The special case
considered is important to analyze the linkage between
mate, soil, and vegetation through the soil moisture dyna
ics, which represents a problem of fundamental hydrolo
interest. This section is presented to show an example of
the previous analytical expressions are applied to more c
plex dynamics, with results whose interpretation becom
very important for the global understanding of the proces

When the lateral contributions can be neglected, the
moisture balance at a point is expressed as@9#

nZr

ds

dt
5I @s,t#2E@s#2L@s#, ~42!

FIG. 3. Mean duration of an excursion belowj, Tj(j) ~dashed
lines!, and frequency of upcrossing ofj, n(j) ~continuous lines!, as
a function of the threshold valuej for the unbounded shot nois
process with linear losses. The four curves have different value
b; l51 d21 andg51 are kept fixed.

FIG. 4. The loss functionr(s) for the soil moisture process.
5-6
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wheren is the soil porosity,Zr is the depth of active soil o
root depth, ands is the relative soil moisture content (0<s
<1). Infiltration from rainfall,I @s,t#, is the stochastic com
ponent of the balance and represents the part of rainfall
actually reaches the soil column.E@s# andL@s# are the rates
of evapotranspiration and leakage, respectively.

We idealize, at the daily time scale, the occurrence
rainfall as a series of point events in continuous time, aris
in a Poisson process of ratel and each carrying a random
amount of rainfall extracted from an exponential distributi
@9#. Under this assumption, Eq.~42! is the same as Eq.~1!
with r(s)5@E(s)1L(s)#/nZr and a random driving proces
represented by Eq.~2!. The mean interval between two rain
fall events is 1/l. The value ofl is corrected with the ex-
pressionl85le2D/a to take into account canopy interce
tion ~see@9,12# for details!, wherea is the mean amount o
rainfall falling during a precipitation event, andD is the
maximum depth of rainfall intercepted by the vegetati
canopy during a single rain event. Finally, the use of Eq.~3!
with sb51 andg5nZr /a for the jump heights distribution
allows to consider the normalization between 0 and 1 of
moisture and the occurrence of runoff events@9,12#.

The piecewise loss functionr(s) deriving from the
evapotranspiration and leakage losses is shown in Fig
There are no losses up to the hygroscopic pointsh ~therefore
sl5sh) and linearly increasing evaporation is present fro
the hygroscopic to the wilting pointsw , which is the soil
moisture level below which plants begin to wilt. Evapotran
piration takes place at a linearly increasing rate from
wilting point to s* , the point that marks the complete st
matal opening, while froms* on evapotranspiration is at
maximum valueEmax. From field capacitysf c to soil satu-
ration (s51), the leakage becomes dominant and the los
increase exponentially up to the saturated hydraulic cond
tivity Ks . A detailed explanation of the rationale behind th
form of r(s) can be found in@12#.

The soil moisture values* below which plants begin
closing their stomata can be taken as a threshold for
occurrence of vegetation water stress@17,18#. The MFPT of
s* , Ts* (s* ), becomes therefore very important for th
analysis of plant condition in water-controlled ecosystem
Equation ~23! can be used to derive the expression
Ts* (s* ) regardless of the piecewise form of the loss fun
tion: all the complications arising from this particular for
of r(s) are in fact embedded in the values ofp(s* ) and
P(s* ), whose analytical expressions can be found in@12#. In
Fig. 5,Ts* (s* ) is studied as a function of the frequencyl of
the rainfall events and of the mean rainfall deptha, in such
a way that the productal remains constant. This is to com
pare environments with the same total rainfallalTseasdur-
ing a growing season lastingTseas, but with differences in
the timing and average amount of the precipitation eve
Independently of the differences in the maximum transp
tion ratesEmax, plants experience longer periods of stre
either where the rainfall events are very rare but intense
where the events are very frequent and light. From a phys
viewpoint, this is due to the relevant losses of transpira
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water either in leakage~or runoff! or in canopy interception
according to the situation, pointing out possible optimal co
ditions for vegetation.

Figure 6 shows two other important variables for t
analysis of plant water status: the mean duration of an ex
sion fromsw to s* , which is important for the analysis of th
recover of a plant from a period of intense stress@18#, and
the MFPT ofs* from sf c , Ts* (sf c), which is useful to ana-
lyze the duration of the periods without water stress at
beginning of the growing season in places with a wet win
season@19#. Ts* (sw) is obtained from Eq.~25!, while
Ts* (sf c) is calculated from Eq.~27!, again without further
difficulties for the piecewise form ofr(s). The variations of
Ts* (sw), Ts* (sf c), and Ts* (s* ) with respect to the root
depthZr are shown in Fig. 6. Since the height of the acti
soil nZr is the ‘‘capacity’’ of the system~42!, the trajectories
of soil moisture become more ‘‘regular’’ when deeper so
are considered, so that bothTs* (sw) and Ts* (sf c) rapidly

FIG. 5. Mean duration of a plant water stress period,Ts* (s* ),
as a function of the frequency of the rainfall eventsl when the total
rainfall during the growing season is kept fixed at 650 mm. T
maximum evapotranspiration rateEmax is varied between 3.5 and 5
mm/d. The root depth isZr560 cm, the soil is a loam, ands*
50.57.

FIG. 6. The effect of variations of the plant root depth on t
mean duration of a water stress periodTs* (s* ), on the mean dura-
tion of a period without water stress at the beginning of the grow
seasonTs* (sf c), and on the mean time plants need to recover a
a period of intense stress,Ts* (sw). The mean rainfall frequency is
l50.2 d21, the mean rainfall depth isa52 cm. The maximum
evapotranspiration rate isEmax54.5 mm/d, s* 50.57, sw50.24
and the soil is a loam with field capacitysf c50.7.
5-7
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increase withZr . A higher value ofTs* (sf c) is favorable for
plants because it implies a longer unstressed period at
beginning of the growing season, while a higher value
Ts* (sw) is problematic for plants which then need a ve
long time to recover after a period of intense stress. Th
features lead to important differences in the water use
terns of deep and shallow rooted plants, with advantages
drawbacks in different situations that affect the favorablen
of a given environment to different vegetal species.

V. CONCLUSIONS

The mean first passage times of processes driven by w
shot noise have been studied in detail for the case of ex
nentially distributed forcing jumps. The main results of t
present work are~i! the simplification of some general ex
pressions for the MFPT’s found in the literature@5# @Eqs.
~23!, ~25!, and~27!#; ~ii ! the expression of the linkage of th
M

hy

s,

03610
he
f

se
t-
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MFPT’s to the steady-state pdf of the process;~iii ! the ex-
tension of the analysis to processes with piecewise loss fu
tion or with an upper bound, which are very important f
many geophysical applications like those involving s
moisture dynamics, as explained in Sec. IV;~iv! fully ex-
plicit expressions for the MFPT’s of the Taka´cs process and
the shot noise with linear losses, some of which@Eqs. ~31!,
~32!, ~40!, and~41!# seem not to have been reported befo
Special attention has been given to the above-mentio
linkage between the MFPT’s and the steady-state pdf of
process, for its importance in the physical interpretation
otherwise more complicated equations.
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